Editorial Board

Editor-in-Chief: Petre Gastescu, Hyperion University of Bucharest (Romania)
Managing Editor: Petre Bretcan, Valahia University of Targoviste (Romania)
Volume 10(1) / 2016
ISSN: 1844-6477 (print version)
ISSN: 2284-5305 (electronic version)

 

 

 

 

INDICATION OF TEMPERATURE INVERTED MICROBIAL ASSIMILATIVE CAPACITIES (EXTRACELLULAR ENZYMES ACTIVITIES) IN THE PELAGIC OF LAKE SEVAN (ARMENIA)

 

Arevik MINASYAN 1,2, Bernhard KARRASCH 2

1UNESCO Chair in Life Sciences, International Postgraduate Educational Center, Acharian 31, Yerevan 0040, Armenia, Tel: +37410 624170, Fax: +37410 612461, E-mail: arevik_m@inbox.ru
2 UFZ - Helmholtz Center for Environmental Research, Brückstrasse 3a, 39114 Magdeburg, Germany, Tel: +49 391 810 9620, Fax: + 49 391 810 9150 E-mail: bernhard.karrasch@ufz.de

Abstract

Pioneering records of extracellular enzymes activities (EEA) in Lake Sevan waters highlight dependence of heterotrophic functioning on physicochemical characteristics and bacterial assemblage. Values of EEA, ranged 0.11-30.39 µg C/P L-1h-1, were higher in upper layers compared to the omission in deeper parts. Particles associated (ecto-) enzymes mainly predominated over free dissolved (exo-) enzymes. In June activities of all studied enzymes followed similar pattern, particularly, decreasing at thermocline and increasing twice/more in cold deeper waters. Regardless higher bacterial density and temperature in June, with no similar records up to now, EEA revealed reverse relationship to temperature and bacteria data and were significantly lesser than in March. Our finding might be suggested as temperature inverted impact to heterotrophic activities in eutrophic conditions. We assume that observed, with temperature raise, declined EEA was due to blocked enzymatic active center from colloids and DOM components interaction, which, in overall, may suppress organic substrate utilization and result in weakening of first and rate limiting step of biological self-purification in Lake Sevan waters. Therefore, since temperature is co-regulator of assimilative/carrying capacity of aquatic ecosystems, climate warming might have unexpected negative feedbacks also through lowering assimilative capacities of water bodies, jeopardizing their quality and ecology.

Keywords: freshwater alpine lakes, Lake Sevan, climate change, eutrophication, temperature, bacteria, extracellular enzymatic activity

 
Full text PDF.
     
   

References (70)

   
  1. Arnosti, C. 2003, Microbial extracellular enzymes and their role in dissolved organic matter cycling, pp. 315-342 in Findlay, S.E.G. & Sinsabaugh, R.L. (edit.), Aquatic ecosystems Academic Press, San Diego, 512p.
  2. Arrhenius, S.A. 1889, Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, ibid.4, 226-248.
  3. Baines, S.B., & Pace, M.L. 1991, The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems, Limnol. Oceanogr., 36, 1078–1090.
  4. Chappel, K.R., & Goulder, R. 1994, Enzymes as river pollutants and the response of native epilithic extracellular-enzyme activity. Environmental Pollution 86: 161–169.
  5. Christian, J.R., & Karl, D.M. 1995, Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces, Limnology and Oceanography, 40(6), 1042-1049.
  6. Chróst, R.J. 1990, Microbial ectoenzymes in aquatic environments, pp. 47-78 in Chrόst R.J. (edit.) Aquatic microbial ecology, Springer, New York, DOI: 10.1007/978-1-4612-3382-4_3, 190p.
  7. Chróst, R.J. 1991, Environmental control of the synthesis and activity of aquatic microbial ectoenzymes, pp. 29-59 in Chróst, R.J. (edit), Microbial Enzymes in Aquatic Environments, Springer Verlag, Berlin, DOI: 10.1007/978-1-4612-3090-8, 317p.
  8. Chróst, R.J., Münster, U., Rai, H., Albecht, D., Witzel, K.P., & Overbeck, J. 1989, Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res. 11: 223-242.
  9. Chróst, R.J., Siuda, W. 2006, Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnol Oceanogr 51:749–762.
  10. Cunha, A., Almeida, A., Coelho, F.J.R.C., Gomes, N. C. M., Oliveira, V., & Santos, A. L. 2010, Bacterial Extracellular Enzymatic Activity in Globally Changing Aquatic Ecosystems, Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain: Formatex Research Center, 124-135.
  11. Fenner,, N., Freeman, C., & Reynolds, B. 2005, Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies, Soil Biology & Biochemistry, 37(10): 1814-1821.
  12. Fogg, G.E. 1977, Excretion of organic matter by phytoplankton. Limnology and Oceanography 22: 576-577.
  13. Freeman, C., Lock, M.A., Marxsen, J., & Jones, S.E. 1990, Inhibitory effects of high molecular weight dissolved organic matter upon metabolic processes in biofilms from contrasting rivers and streams, Freshwat. Biol., 24, 159-166.
  14. Fuhrman, J.A. 1999, Marine viruses and their biogeochemical and ecological effects. Nature 399: 541-548.
  15. Grossart, H-P, Tang, K.W., Kiørboe, T., & Ploug, H. 2007, Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages, FEMS Microbiol Lett, 266,194 -200, DOI:10.1111/j.1574-6968.2006.00520.x.
  16. Hahn, M.W., Minasyan, A., Lang, E., Koll, U., & Sproer, C. 2012, Polynucleobacterdifficilis sp. nov., a planktonic freshwater bacterium affiliated with subcluster B1 of the genus Polynucleobacter, Int. J. Syst. Evol. Microbiology; 62, 376-383, DOI: 10.1099/ijs.0.031393-0.
  17. Helmke, E., & Weyland, H. 1986, Effect of hydrostatic pressure and temperature on the activity and synthesis of chitinases of Antarctic Ocean bacteria, Marine Biology, 91-97.
  18. Hobbie, Je, Daley Rj., & Jasper, S. 1977, Use of nucleopore filters for counting bacteria by fluorescence microscopy, Applied and Environmental Microbiology, 33, 1225-1228.
  19. Hoppe, H.G. 1983, Significance of exoenzymatic activities in the ecology of brackish water: Measurements by means of methylumbelliferyl- substrates, Marine Ecology Progress Series, 11, 299-308.
  20. Hoppe, H.G. 1986, Relations between bacterial extracellular enzyme activity and heterotrophic substrate uptake in a brackish water environment, GERBAM-Deuxieme Colloque de Bacteriology marine-CNRS, IFREMER, Actes de Colloques 3. Ann Arbor, 119-128.
  21. Hoppe, H.G. 1991, Microbial extracellular enzyme activity: a new key parameter in aquatic ecology, pp. 60-83 in Chróst, R.J. (edit.), Microbial Enzymes in Aquatic Environments, Springer Verlag, New York, DOI: 10.1007/978-1-4612-3090-8_4, 317p.
  22. Hoppe, H.G., Kim S.J., & Gocke, K. 1988, Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake, Applied and Environmental Microbiology, 54, 784-790.
  23. Hoppe, H. & Gocke, K. 1993. The influence of global climate and hydrography on microbial activity in the ocean, results of a NS Atlantic transect. Proceding of Internationl Symposium Environmental Microbiology. Korea, 93-110.
  24. Hovhannisyan, R. 2010, Reports of the Institute of Hydroecology and Ichthyology of the National Academy of Sciences of Armenia [in Armenian].
  25. IPCC. 2007, Climate change 2007, contribution of working group I, II and III to the fourth assessment report of the intergovernmental panel on climate change, in Parry M. et. al. (edit), Impacts, adaptation and vulnerability, Cambridge University Press, Cambridge, 987p.
  26. Jackson, C.R., Tyler, H.L., Millar, J.J. 2013, Determination of Microbial Extracellular Enzyme Activity in Waters, Soils, and Sediments using High Throughput Microplate Assays. J Vis Exp. 80: 50399, DOI: 10.3791/50399.
  27. Jeppesen, E., Meerhoff, M., Davidson, T.A., Trolle, D., Sondergaard, M., Lauridsen, T.L., Beklioğlu, M., Brucet, S., Volta, P., Gonzalez-Bergonzoni, I., & Nielsen, A. 2014, Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes, J. Limnol., 73(s1), 88-111, DOI: 10.4081/jlimnol.2014.844.
  28. Jurmars, P.A., Penry, D.L., Baross J.A., Perry, M.J., & Frost, B.W. 1989, Closing the microbial loop:Dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Research 36: 483-495.
  29. Karrasch, B. 2005, Qualifizierung und Quantifizierung der ersten Stufe der mikrobiologischen Selbstreinigung (Extrazelluläre Enzymaktivität, EEA) in Gewässern und Indikation von Gewässerbelastungen und ökologischen Zuständen, p. 1-43 in Steinberg, C., Calmano, W., Klapper, H. & Wilken, R. (edit.), Handbuch angewandte Limnologie, Landsberg, 43 total number of pages, [in German], DOI: 10.1002/9783527678488.hbal2005011.
  30. Karrasch, B., Bormki, G., Herzsprung, P., Winkler, M., & Baborowski, M. 2003a, Extracellular Enzyme Activity in the River Elbe during a Spring Flood Event, Acta hydrochim. hydrobiol., 31(4-5), 307-318, DOI: 10.1002/aheh.200300504.
  31. Karrasch, B., Ullrich, S., Mehrens M., & Zimmermann-Timm, H. 2003b, Free and particle-associated extracellular enzyme activity and bacterial production in the Lower Elbe Estuary, Germany, Acta Hydrochimicaet Hydrobiologica, 31, 297-306, DOI: 10.1002/aheh.200300505.
  32. Karrasch, B., Parra, O., Cid, H., Mehrens, M., Pacheco, P., Urrutia, R., Valdovinos C., & Zaror, C. 2006, Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobio River, Chile, Science of the Total Environment, 359, 194-208.
  33. Karrasch, B., Woelfl, S., Urrutia, R., González, J. N., Valdovinos, C., Cid, H., & Parra, O. 2011, Ecomicrobiology and microbial assimilative capacity of the oligotrophic Andean Lake Laja, Chile, Revista Chilena de Historia Natural, 84, 433-450.
  34. Kisand, Y., Tammert, H. 2000, Bacterioplankton strategies for leucine and glucose uptake after a cyanobacterial bloom in an eutrophic shallow lake. Soil Biol Biochem 32:1965–1972.
  35. Koch, O., Tscherko, D., & Kandeler, E. 2007, Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils, Global Biogeochemical Cycles, 21, GB4017.
  36. Kosolapov, D.B., Romanenko, A.V., Kopilov, A.I., Minasyan A.M., & Vardanyan, H.S. 2010, Quantitative distribution of bacterioplankton within Lake Sevan, Ecology of Lake Sevan during the period of water lever rise, pp. 105-114 in Krilov, A.V. (edit.), Nauka, Makhachkala, [in Russian].
  37. Kriss, A. E., Mishustlna, I. E., & Zemtsova, E. V. 1963, Biochemical activity of microorganisms isolated from various regions of the world ocean, J. Gen. Microbiol., 29, 221-232.
  38. Lampert, W. 1978, Release of dissolved organic carbon by grazing zooplankton. Limnology and Oceanography 23: 831-834.
  39. Lancelot, C., & Billen, G. 1984, Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the Southern Bight of the North Sea, Limnol. Oceanogr., 29, 721-730.
  40. Lind, D., & Taslakyan, L. 2005, Restoring the fallen blue sky: Management issues and environmental legislation for Lake Sevan, Armenia, Environs. 29(1), 29-103.
  41. Meyer-Reil, L.-A. 1987, Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments, Appl. Environ. Microbiol., 53, 1748-1755.
  42. Meyer-Reil, L.A. 1991, Ecological aspects of enzymatic activity in marine sediments, pp. 84-95 in Chróst, R.J. (edit.), Microbial Enzymes in Aquatic Environments, Springer Verlag, Berlin, Heidelberg, New York, 317p.
  43. Meyer-Reil, LA., & Koster, M. 1992, Microbial life in pelagic sediments: the impact of environmental parameters on enzymatic degradation of organic material, Mar Ecol Prog Ser, 81, 65-72.
  44. Minasyan, A., & Karrasch, B. 2015, Relationship between quantitative characteristics of viruses to picocyanobacteria and heterotrophic nanoflagellates in Lake Sevan waters (Armenia), Electronic Journal of Natural Sciences, I 2, N 25, 24-29.
  45. Minasyan, A.M., Hovsepyan, A.A., Hambaryan, L.R., & Vardanyan, H.S. 2012, Dynamics of microbial groups' abundances in Lake Sevan: a comparison of cyanobacterial assemblage to heterotrophic bacteria, Electronic Journal of Natural Sciences, I 2, N 19, 38-46.
  46. Minasyan, S. 2010, Reports of the Ministry of Nature Protection of Republic of Armenia, Monitoring Center, www.armmonitoring.am [in Armenian].
  47. Münster, U. 1991, Extracellular enzyme activity in europhic and polyhumic lakes, pp. 96-122 in Chrόst R.J. (edit.) Microbial enzymes in aquatic environments, Brock/Springer series in contemporary bioscience, Springer, Berlin Heidelberg New York, 317p.
  48. Münster, U., & Chròst, R.J. 1990, Origin, composition and microbial utilization of organic matter, pp. 8-46 in Overbeck, J. & Chròst, R.J. (edit.) Aquatic microbial ecology: biochemical and molecular approaches, Springer-Verlag, New York, 189p.
  49. Münster, U., Einiö, P., Nurminen, J., & Overbeck, J. 1992, Extracellular enzymes in a polyhumic lake: important regulators in detritus processing, Hydrobiologia, 229(1), 225-238.
  50. Pomeroy, L.R., & Wiebe, W.J. 2001, Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria, J. Aquat Microb Ecol., 23, 187-204.
  51. Rath, W., Osterhage, G., Kuhn, W., Gröne, H.J., & Fuches, E. 1993, Visualization of 1251-endothelin-1 binding sites in human placenta and umbilical vessels, Gynecol Obstet Invest, 395, 209-213.
  52. Reyes, J.L., Campos, F., Wei, H., Arora, R., Yang, Y., Karlson, D.T., & Covarrubias, A.A. 2008, Functional dissection of hydrophilins during in vitro freeze protection, Plant Cell Environ., 31, 1781-1790, DOI: 10.1111/j.1365-3040.2008.01879.x.
  53. Romaní, A.M., & Sabater, S. 1999, Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river, Aquat. Sci., 61, 122-132.
  54. Sabater, S., & Romaní, A.M. 1996, Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream, Hydrobiologia, 335, 107-113.
  55. Sabater, S., Gregory, S.V., & Sedell, J.R. 1998, Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream, J. Phycol., 34, 561-567, DOI: 10.1046/j.1529-8817.1998.340561.x.
  56. Schweitzer, B., & Simon, M. 1994, Growth limitation of planktonic bacteria in a large mesotrophic lake, Microb. Ecol., 28, 89-102, DOI: 10.1007/BF00184516.
  57. Simon, M., & Azam, F. 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol. Prog.. Ser. 51, 201-213.
  58. Sinsabaugh, R.L., & Linkins, A.E. 1988, Exoenzyme activity associated with lotic epilithon, Freshwat. Biol., 20, 249-261, DOI: 10.1111/j.1365-2427.1988.tb00449.x.
  59. Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, Ch., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., Gartner, T.B., Hobbie, S.E., Holland, K., Keeler, B.L., Powers, J.S., Stursova, M., Takacs-Vesbach, C., Waldrop, M.P., Wallenstein, M.D., Zak, D.R., & Zeglin. L.H. 2008, Stoichiometry of soil enzyme activity at global scale. Ecology letters. 11, 1252-1264. DOI: 10.1111/j.1461-0248.2008.01245.x.
  60. Somville, M., & Billen, G. 1983, A method for determining exoproteolytic activity in natural waters, Limnol. Oceanogr., 28, 190-193, DOI: 10.4319/lo.1983.28.1.0190.
  61. Stursova, M., Crenshaw, C., & Sinsabaugh, R.L. 2006, Microbial responses to long term N deposition in a semi-arid grassland, Microb. Ecol., 51, 90-98.
  62. Tietjen, T., & Wetzel, R.G. 2003, Extracellular enzyme clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation, Aquatic Ecology, 37, 331-339.
  63. Trasar-Cepeda, C., Gil-Sotres, F., & Leirós, M.C. 2007, Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain, Soil Biology and Biochemistry, 39, 311-319.
  64. Traving, S.J., Thygesen, U.H., Riemann, L., & Stedmon, C.A. 2015, A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81:7385-7393. DOI:10.1128/AEM.02070-15.
  65. Vetter, Y.A., Deming, J.W., Jumars, P.A., & Krieger-Brockett, B.B. 1998, A predictive model of bacterial foraging by means of freely released extracellular enzymes, Microb. Ecol., 36, 75-92.
  66. Wetzel, R.G. 1991, Extracellular enzymatic interactions: Storage, redistribution, and interspecific communication, pp. 6-28 in Chróst, R.J. (edit.) Microbial Enzymes in Aquatic Environments, Springer-Verlag, New York, 317p.
  67. Wetzel, R.G. 1992, Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems, Hydrobiologia, 229, 181-198.
  68. Wetzel, R.G. 2000, Freshwater ecology: changes, requirements and future demands, Limnology, 1, 3-9.
  69. Ziervogel, K, & Arnosti, C. 2008, Polysaccharide hydrolysis in aggregates and free enzyme activity in aggregate-free seawater from the north-eastern Gulf of Mexico, Environ. Microbiol., 10, 289-299, DOI: 10 .1111/j.1462-2920.2007.01451.x.
  70. Zweifel, U.L. 1999, Factors controlling accumulation of labile dissolved organic carbon in the gulf of Riga, Estuarine, Coastal and Shelf Science, 48, 357-370, DOI:10.1006/ecss.1998.0428.
 
© Romanian Limnogeographical Association (2008)