Editorial Board

Editor-in-Chief: Petre Gastescu, Hyperion University of Bucharest (Romania)
Managing Editor: Petre Bretcan, Valahia University of Targoviste (Romania)
Volume 10(1) / 2016
ISSN: 1844-6477 (print version)
ISSN: 2284-5305 (electronic version)

 

 

 

 

IMPACT OF WATER-LEVEL CHANGES TO AQUATIC VEGETATION IN SMALL OLIGOTROPHIC LAKES FROM ESTONIA

 

Egert VANDEL, Tiit VAASMA, Tiiu KOFF, Jaanus TERASMAA

Institute of Ecology, School of Natural Sciences and Health, Tallinn University; Uus-Sadama 5, Tallinn, 10120, Estonia; Tel: +3726199828 E-mail: egert.vandel@tlu.ee

Abstract

This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network). The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

Keywords: water-level changes, small lakes, oligotrophic lake, eutrophication, human impact, Lobelia dortmanna, Isoëtes lacustris, Sparganium angustifolium

 
Full text PDF.
     
   

References (31)

   
  1. Allen, G. R., Pereira, S. L., Raes, D. & Smith, M. 1998, Crop Evapotranspiration Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper 56. FAO, Rome, 300p.
  2. Blindow, I. 1992, Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes, Freshwater Biology, 28:1, 15-27.
  3. Cooke, G. D. 1980, Lake level drawdown as a macrophyte control technique, JAWRA Journal of the American Water Resources Association, 16:2, 317-322.
  4. Coops, H. & Hosper, S. H. 2002, Water-level Management as a Tool for the Restoration of Shallow Lakes in the Netherlands, Lake and Reservoir Management, 18:4, 293-298.
  5. ELB [Estonian Land Board]. 1973. Topographical map. A 1:10 000.
  6. Erg, K. & Ilomets, M. 1989, Mäetööde mõju Kurtna järvede veetasemele seisund ja prognoos [The effect of mining on the water level of Kurtna lakes – current state and prognosis]. In Kurtna järvestiku looduslik seisund ja selle areng II [Natural Status and Development of Kurtna Lake District II] (Ilomets, M., ed.), pp. 47-54. Valgus, Tallinn [in Estonian].
  7. Hannon, G.E. & Gaillard, M.-J. 1997, The plant macrofossil record of past lake-level changes, Journal of Paleolimnology, 18, 15-28.
  8. Havens, K. E., Sharfstein, S., Brady, M. A., East, T. L., Harwell, M. C., Maki, R. P. & Rodusky A. J. 2004, Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA, Aquatic Botany, 78:1, 67-82.
  9. Hellsten, S.K. 2001, Effects of lake water level regulation on aquatic macrophyte stands in northern Finland and options to predict these impacts under varying conditions, Acta Botanica Fennica, 171, 1-47.
  10. Keddy, P. A. & Reznicek, A. A. 1986, Great Lakes Vegetation Dynamics: The Role of Fluctuating Water Levels and Buried Seeds, Journal of Great Lakes Research, 12:1, 25-36.
  11. Lillieroth, S. 1950, Über Folgen kulturbedingter Wasserstandsenkungen für Makrophyten- und Planktongemeinschaften in seichten Seen des südschwedischen Oligotrophiegebietes; eine Studie mit besonderer Berücksichtigung der angewandten Limnologie: eine Studie mit besonderer Berücksichtigung der angewandten Limnologie. Edit: Thunmark, S. Acta Limnologica, 3, 288p. [In German, summary in English].
  12. Liu, X., Zhang, Y., Yin, Y.,Wang, M. & Qin, B. 2013, Wind and submerged aquatic vegetation influence bio-optical properties in large shallow Lake Taihu, China, Journal Of Geophysical Research: Biogeosciences, 118, 1-15.
  13. Mäemets, A. (ed.) 1968, Eesti järved [Estonian Lakes]. Valgus, Tallinn, 548p [in Estonian].
  14. Mäemets, A. (ed.) 1977, Eesti NSV järved ja nende kaitse, [Lakes of Estonian SSR and the protection], Edit. Valgus, Tallinn, 263p [in Estonian].
  15. Miljan, A. 1958, Toitainetevaeste järvede vegetatsioonist Eesti NSV-s [Vegetation of oligotrophic lakes in Estonian SSR]. In Botaanika-alased tööd [Studies in Botany] (Vaga, A., ed), 119-137, Tartu Riikliku Ülikooli Toimetised, Tartu [In Estonian].
  16. Møller, C.L., Sand-Jensen, K. 2011, High sensitivity of Lobelia dortmanna to sediment oxygen depletion following organic enrichment, New Phytologist, 190, 320-331.
  17. Ott, I. 2001, Eesti väikejärvede monitooring 2001 [Monitoring report of Estonian small lakes 2001]. EPMÜ Zooloogia ja Botaanika Instituut , 67p, [Monitoring report in Estonian].
  18. Ott, I. 2006, Eesti väikejärvede seire 2006. [Monitoring of Estonian small lakes 2006]. Eesti Maaülikooli põllumajandus- ja keskkonnainstituut, 173p, [Monitoring report in Estonian].
  19. Pallo, S. 1977, Kurtna järvestik, [Kurtna Lake District], diploma, Tartu Riiklik Ülikool, Füüsilise geograafia kateeder [manuscript in Estonian].
  20. Põder, T., Riet, K., Savitski, L., Domanova, N., Metsur, M., Ideon, T., Krapiva, A., Ott, I., Laugaste, R., Mäemets, A., Mäemets, A., Toom, A., Lokk, S., Heinsalu, A., Kaup, E., Künnis, K. & Jagomägi, J. 1996, Mõjutatav keskkond [Affected environment]. In Keskkonnaekspertiis. Kurtna piirkonna tootmisalade mõju järvestiku seisundile [Environmental Assessment. The Effect of Industrial Areas in the Kurtna Region on the Status of the Lakes] (Ideon, T. & Põder, T., eds), pp. 16-48. AS Ideon & Ko, Tallinn [in Estonian].
  21. Pulido, C., Keijsers, D.J.H., Lucassen, E.C.H.E.T., Pedersen, O. & Roelofs, J.G.M. 2012, Elevated alkalinity and sulfate adversely affect the aquatic macrophyte Lobelia dortmanna, Aquatic Ecology, 46, 283-295.
  22. Punning, J.-M. (ed) 1994, The influence of natural and anthropogenic factors on the development of landscapes. The results of a comprehensive study in NE Estonia, Edit. Institute of Ecology, Estonian Academy of Science, Publication 2, 227p.
  23. Punning, J.-M., Boyle, J.F., Terasmaa, J., Vaasma, T. & Mikomägi, A. 2007, Changes in lake sediment structure and composition caused by human impact: repeated studies of Lake Martiska, Estonia, The Holocene, 17:1, 145-151.
  24. Riikoja, H. 1940, Zur Kenntnis einiger Seen Ost-Eestis, insbesondere ihrer Wasserchemie. In: Eesti Teaduste Akadeemia juures oleva Loodusuurijate seltsi aruanded, XLVI, Tartu, 1-167.
  25. Sagris, A. 1989, Kurtna järvestiku läbivoolujärvede kemismist [The chemistry of flow through lakes in Kurtna Lake District]. In Kurtna järvestiku looduslik seisund ja selle areng II [Natural Status and Development of Kurtna Lake District II] (Ilomets, M., ed.), pp. 122-133. Valgus, Tallinn [in Estonian].
  26. Schallenberg, M. & Burns, C. W. 2004, Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment, Freshwater Biology, 49, 143-159.
  27. Scheffer, M., Szabó, S., Gragnani, A., van Nes, E. H., Rinaldi, S., Kautsky, N., Norberg, J., Roijackers, R. M. M. & Franken, R. J. M. 2003, Floating plant dominance as a stable state, Proceedings of the National Academy of Sciences of the United States of America, 100:7, 4040-4045.
  28. Terasmaa, J., Puusepp, L., Marzecová, A., Vandel, E., Vaasma, T. & Koff, T. 2013, Natural and human-induced environmental changes in Eastern Europe during the Holocene: a multi-proxy palaeolimnological study of a small Latvian lake in a humid temperate zone, Journal of Paleolimnology, 49, 663-678.
  29. Vaasma, T., Terasmaa, J. & Vandel, E. 2015, Changes in sedimentation and aquatic vegetation caused by drastic lake-level fluctuation, Lakes, reservoirs and ponds, 9, 29-42.
  30. Vainu, M. & Terasmaa, J. 2014, Changes in climate, catchment vegetation and hydrogeology as the causes of dramatic lake-level fluctuations in the Kurtna Lake District, NE Estonia, Estonian Journal of Earth Sciences, 63:1, 45-61.
  31. Wallsten, M. & Forsgren, P.-O. 1989, The effects of increased water level on aquatic macrophytes, Journal of Aquatic Plant Management, 27, 32-37.
 
© Romanian Limnogeographical Association (2008)