Editorial Board

Editor-in-Chief: Petre Gastescu, Hyperion University of Bucharest (Romania)
Managing Editor: Petre Bretcan, Valahia University of Targoviste (Romania)
Volume 9(1) / 2015
ISSN: 1844-6477 (print version)
ISSN: 2284-5305 (electronic version)

 

 

 

 

CHANGES IN SEDIMENTATION AND AQUATIC VEGETATION CAUSED BY DRASTIC LAKE-LEVEL FLUCTUATION

 

Tiit VAASMA, Jaanus TERASMAA, Egert VANDEL

1Institute of Ecology, Tallinn University, Uus-Sadama 5, Tallinn, Estonia; Tel: +3726199828, Email: vaasma@tlu.ee

Abstract

This study identifies the water-level fluctuation signals from the lake sediment. The water level of small Lake Martiska (Estonia) decreased 3.4 m from 1946 to 1987 and only 29% of lake area and 21% of total volume remained. Since the 1990s the water level started to rise. The comparison between the LOI, grain-size distribution and documented water-level changes suggests that sign of water-level fluctuation in clearly reflected in sediment cores from the transportation and accumulation area. Regression causes the coarse-grained sediment transportation to the deepest area of the lake, but the transgression leaves a different pattern – when the lake level recovers, the connection with the previously available near-shore sand is still missing and only the previously reworked material can be transported to deeper area. During the water-level fluctuation period the accumulated sediments originate from two main sources: previously accumulated lacustrine sediments and the glaciolacustrine nearshore sands. The water-level fluctuation has also affected the ecology of the lake. Previously oligotrophic lake is now mesotrophic and the rare characteristic species for oligotrophic lakes such as Isoëtes lacustris L. and Lobelia dortmanna L. have disappeared.

Keywords: grain size, water-level fluctuation, lake sediment, lake ecology, macrophytes, human impact, palaeolimnology

 
Full text PDF.
     
   

References (42)

   
  1. Allen, J.R.L. 1970, Physical processes of sedimentation: an introduction, In: Sutton, J. (ed.) Earth Science Series, vol. 1, Edit. George Allen and Unwin, 248p.
  2. Blazevic, M.A., Kirby, M.E., Woods, A.D., Browne, B.L. & Bowman, D.D. 2009, A sedimentary facies model for glacial-age sediments in Baldwin Lake, Southern California, Sedimentary Geology, 219, 151-168.
  3. Blindow, I. 1992, Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes, Freshwater Biology, 28:1, 15-27.
  4. Boyle, J.F. 2001, Inorganic geochemical methods in palaeolimnology, In: Last, M.L. & Smol, J.B. (eds.) Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods, Edit. Kluwer Academic Publishers, Dordrecht/Boston/London, 83-141.
  5. Dearing, J.A. 1997, Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review, Journal of Paleolimnology, 18, 1-4.
  6. Digerfeldt, G. 1986, Studies on past lake-level fluctuations, In: Berglund, B.E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology, Edit. John Wiley and Sons, Chichester – New York, pp. 127-143.
  7. Erg, K. & Ilomets, M. 1989, Mäetööde mõju Kurtna järvede veetasemele seisund ja prognoos (The effect of mining on the water level of Kurtna lakes current state and prognoosis), In: Ilomets, M. (ed.) Kurtna järvestiku looduslik seisund ja selle areng II (Natural Status and Development of Kurtna Lake District II), Valgus, Tallinn, pp. 47-54 [in Estonian].
  8. Gilbert, R. 2003, Spatially irregular sedimentation in a small, morphologically complex lake: implication for paleoenvironmental studies, Journal of Paleolimnology, 29, 209-220.
  9. Havens, K.E., Sharfstein, S., Brady, M.A., East, T.L., Harwell, M.C., Maki, R.P. & Rodusky A.J. 2004, Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA, Aquatic Botany, 78:1, 67-82.
  10. Heiri, O., Lotter, A.F. & Lemcke, M.-J. 2001, Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results, Journal of Paleolimnology, 25, 101-110.
  11. Hilton, J., lishman, J.P. & Allen, P.V. 1986, The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake, Limnology and Oceanography, 31, 125-133.
  12. Håkanson, L. 1977, The influence of wind, fetch and water depth on the distribution of sediments in Lake Vänern, Sweden, Canadian Journal of Earth Sciences, 14, 397-412.
  13. Håkanson, L. & Jansson, M. 1983, Principles of Lake Sedimentology, Edit. Springer-Verlag, Berlin, 316p.
  14. Ilomets, M. (ed.) 1987, Kurtna järvestiku looduslik seisund ja selle areng. 3-8. november 1986. a. toimunud ametkondadevahelise nõupidamise ettekannete kogumik (Natural Status and Development of the Kurtna Lake District I), Edit. Valgus, Tallinn, 234p [in Estonian].
  15. Ilomets, M. (ed.) 1989, Kurtna järvestiku looduslik seisund ja selle areng. 7. ja 8. aprillil 1988. a. toimunud II ametkondadevahelise nõupidamise ettekannete kogumik (Natural Status and Development of the Kurtna Lake District II), Edit. Valgus, Tallinn, 169p [in Estonian].
  16. Koff, T. & Vandel, E. 2008, Spatial distribution of macrofossil assemblages in surface sediments of two small lakes in Estonia, Estonian Journal of Ecology, 57:1, 5-20.
  17. Kont, A. & Arold, I. 1987, Kurtna mõhnastiku reljeefi põhijooni (Topography of Kurtna Kame Field), In: Ilomets, M. (ed.) Kurtna järvestiku looduslik seisund ja selle areng II (Natural Status and Development of Kurtna Lake District I), Valgus, Tallinn, pp. 25-31 [in Estonian].
  18. Lillieroth, S. 1950, Über Folgen kulturbedingter Wasserstandsenkungen für Makrophyten- und Planktongemeinschaften in seichten Seen des südschwedischen Oligotrophiegebietes; eine Studie mit besonderer Berücksichtigung der angewandten Limnologie: eine Studie mit besonderer Berücksichtigung der angewandten Limnologie. Edit: Thunmark, S. Acta Limnologica, 3, 288p [in German, summary in English].
  19. Liu, X., Zhang, Y., Yin, Y., Wang, M. & Qin, B. 2013, Wind and submerged aquatic vegetation influence bio-optical properties in large shallow Lake Taihu, China, Journal Of Geophysical Research: Biogeosciences, 118, 1-15.
  20. Marzecova, A., Mikomägi, A., Koff, A. & Martma, T. 2011, Sedimentary geochemical response to human impact on Lake Nõmmejärv, Estonia, Estonian Journal of Ecology, 60:1, 54-69.
  21. Miljan, A. 1958, Toitainetevaeste järvede vegetatsioonist Eesti NSV-s [Vegetation of oligotrophic lakes in Estonian SSR]. In: Vaga, A. (ed) Botaanika-alased tööd [Studies in Botany], Tartu Riikliku Ülikooli Toimetised, Tartu, pp. 119-137 [in Estonian].
  22. Mäemets, A. (ed.) 1977, Eesti NSV järved ja nende kaitse (Lakes of Estonian SSR and the protection), Edit. Valgus, Tallinn, 263p [in Estonian].
  23. Ott, I. 2001, Eesti väikejärvede monitooring 2001 (Monitoring report of Estonian small lakes 2001). EPMÜ Zooloogia ja Botaanika Instituut , 67p [monitoring report in Estonian].
  24. Ott, I., Laugaste, R., Mäemets, A., Mäemets, A., Kaup, E., Künnis, K., Heinsalu, A., Toom, A., Lokk, S. & Põder, T. 1995, Kurtna järvestiku limnoloogiline ekspertiis (Limnological assessment of Kurtna Lake District) [manuscript in Estonian].
  25. Pallo, S. 1977, Kurtna järvestik (Kurtna Lake District), diploma, Tartu Riiklik Ülikool, Füüsilise geograafia kateeder [manuscript in Estonian].
  26. Punning, J.-M. (ed.) 1994, The influence of natural and anthropogenic factors on the development of landscapes. The results of a comprehensive study in NE Estonia, Edit. Institute of Ecology, Estonian Academy of Science, Publication 2, 227p.
  27. Punning, J.-M., Terasmaa, J. & Vaasma, T. 2006, The impact of lake-level fluctuations on the sediment composition, Water, Air, and Soil Pollution: Focus, 6:5-6, 515-521.
  28. Punning, J.-M., Boyle, J.F., Terasmaa, J., Vaasma, T. & Mikomägi, A. 2007, Changes in lake sediment structure and composition caused by human impact: repeated studies of Lake Martiska, Estonia, The Holocene, 17:1, 145-151.
  29. Riikoja, H. 1940, Zur Kenntnis einiger Seen Ost-Eestis, insbesondere ihrer Wasserchemie, In: Eesti Teaduste Akadeemia juures oleva Loodusuurijate seltsi aruanded, XLVI, Tartu, 1-167.
  30. Schallenberg, M. & Burns, C.W. 2004, Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment, Freshwater Biology, 49, 143-159.
  31. Shteinman, B.S. & Parparov, A.S. 1997, An approach to particulate matter transfer studies in littoral zones of lakes with changing morphometry, Water Science and Technology, 36, 199-205.
  32. Sun, D., Bloemendal. J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z. & Su, R. 2002, Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components, Sedimentary Geology, 152:3, 263-277.
  33. Terasmaa, J. 2005, Bottom topography and sediment lithology in two small lakes in Estonia, Proceedings of the Estonian Academy of Sciences. Biology, Ecology, 54:3, 171-189.
  34. Terasmaa, J., Puusepp, L., Marzecová, A., Vandel, E., Vaasma, T. & Koff, T. 2013, Natural and human-induced environmental changes in Eastern Europe during the Holocene: a multi-proxy palaeolimnological study of a small Latvian lake in a humid temperate zone, Journal of Paleolimnology, 49:4, 663-678.
  35. Vaasma, T. 2008, Grain-size analysis of lacustrine sediments: a comparison of pre-treatment methods, Estonian Journal of Ecology, 57:4, 231-243.
  36. Vaasma, T. 2010, Grain-size Analysis of Lake Sediments: Research Methods and Applications, PhD theses, Edit. Tallinna University, 130p.
  37. Vainu, M. & Terasmaa, J. 2014, Changes in climate, catchment vegetation and hydrogeology as the causes of dramatic lake-level fluctuations in the Kurtna Lake District, NE Estonia, Estonian Journal of Earth Sciences, 63:1, 45-61.
  38. Vainu, M., Terasmaa, J. & Häelm, M. 2015, Relations between groundwater flow in an unconfined aquifer and seepage patterns in a closed-basin lake in glacial terrain. Hydrology Research (in press).
  39. Vandel, E. & Koff, T. 2011, Anthropogenically induced changes in the sedimentation processes in the littoral zone of Lake Verevi, South Estonia, Estonian Journal of Ecology, 60:3, 167-182.
  40. Vares, K. 1987, Kurtna mõhnastiku pinnasetete geoloogiast (Geology of the sediment of Kurtna Kame Field), In: Ilomets, M. (ed.) Kurtna järvestiku looduslik seisund ja selle areng II (Natural Status and Development of Kurtna Lake District I), Valgus, Tallinn, pp. 32-36 [in Estonian].
  41. Varvas, M. & Punning, J.-M. 1993, Use of the 210Pb method in studies of the development and human impact history of some Estonian lakes, The Holocene, 3, 34-44.
  42. Wallsten, M. & Forsgren, P.-O. 1989, The effects of increased water level on aquatic macrophytes, Journal of Aquatic Plant Management, 27, 32-37.
 
© Romanian Limnogeographical Association (2008)