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Abstract. Dam reservoirs designed on past hydrological records exhibit increasing vulnerability and
uncertainty propagating over time under changing runoff regimes triggered by climate change. In
particular, standard operating policy (SOP), which focuses on directly meeting target demand and
does not include any operators to mitigate future shortage risks, becomes sensitive to variability in
projected inflows, leading to sudden and severe vulnerabilities in dry seasons. In this study, the
uncertainties in projected system vulnerability (VUL) for the Tahtali reservoir in western Turkey
were analyzed under a total of 140 streamflow projections obtained from a combination of five global
climate models (GCMs), two emission scenarios (ESs), two downscaling methods, and 7 hydrological
models (HMs). In this context, a two-dimensional hedging model (HDG-2d) and SOP reservoir
operation models were examined over the 2021-2099 projection horizon. Four-factor analysis of
variance (four-way ANOVA) showed that 36% of the total VUL variance under SOP was due to the
HM selection, and interaction terms made a significant contribution to the total uncertainty.
Compared to the SOP, the HDG-2d model significantly attenuated the variability in VUL caused by
the HM selection, reducing the total uncertainty by 65%. More importantly, this model ensured that
86% of the 140 projection variants remained below the threshold value of 0.25. On the other hand,
the GCM and ES variance contributions to the total projection variance under HDG-2d increased to
20% and 42%, respectively. Rising temperature and evaporation signals, particularly in the
pessimistic RCP8.5 scenario, led to the parameterization of more restrictive release strategies.
Therefore, the fact that emission scenario selection becomes more temporally influential in
projections on temperature and evaporation rather than annual mean inflow changes reveals the
response of HDG-2d to these varying climate signals. Yet, it would still be inappropriate to praise the
higher VUL values obtained under SOP despite its relatively lower uncertainty in certain sources.
Interestingly, the HDG-2d model can be an important tool for decision-makers because of its ability
to suppress HM-induced low-flow volatility and its adaptive structure that can account for GCM-
driven hydro-meteorological changes.

Keywords: Reservoir operation, adaptive hedging rule, uncertainty, system vulnerability.

1 INTRODUCTION

Downscaling studies conducted in basins within the Mediterranean climate zone, including
Tirkiye, where global climate models (GCMs) are operated under Representative Concentration
Pathways (RCP) scenarios, have projected that temperatures are expected to increase in the future,
while precipitation and runoff patterns are likely to decrease, albeit with notable uncertainties
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(Bozkurt et al., 2015; Okkan et al., 2024). These climate change-induced impacts are reflected in the
hydrological process and consequently affect dam reservoirs, which are the most critical
infrastructure for the development and management of integrated water resources. Both climatic
factors and the increasing demand for water use due to population growth and urbanization are
increasingly challenging decision-makers and management institutions in the context of balanced
water allocation. Therefore, forward-looking studies are necessary to mitigate the potential impacts
of climate change in the future and ensure the sustainability of reservoir releases.

Although GCMs employed by researchers can provide long-term projections, the fact that the
modeling process carries significant uncertainties poses another issue. Previous studies indicate that
uncertainties in climate change projections can arise from various sources, but the main factors that
stand out are model-based uncertainties and those from emission scenarios (Yip et al., 2011). Model
uncertainties stem from a lack of complete understanding of the relevant physical process and
implementation constraints, while the internal variability also affects the projection spread (Hawkins
and Sutton, 2009, 2011; Yip et al., 2011; Orlowsky and Seneviratne, 2013). All these studies, which
evaluate distinct uncertainty components, mostly focus on variables such as precipitation,
temperature and runoff, whereas there are a scant number of papers that address uncertainty in
projected reservoir operation outputs (e.g., Okkan et al., 2023).

It has been emphasized that when examining sources of uncertainty in climate projections,
using multi-model ensembles rather than a single GCM is more essential (Knutti et al., 2010).
Furthermore, statistical analyses have been applied to quantify the individual contributions of
uncertainty sources as well as the uncertainty arising from their interactions. Several studies have
sought to quantify and decompose uncertainties based on their sources. For example, Mujumdar and
Ghosh (2008) analyzed streamflow projections and expressed uncertainties from multiple GCMs and
emission scenarios in terms of probability distributions using a fuzzy logic-based approach. Hawkins
and Sutton (2009, 2011) revealed that time-dependent polynomial trend models can be employed to
quantitatively assess sources of uncertainty in precipitation and temperature projections. A similar
methodology was also adopted by Orlowsky and Seneviratne (2013), in which fitting a 4th-degree
polynomial to drought indices derived from projected meteorological data was made. However, Yip
etal. (2011) specifically pointed out that interpreting both total uncertainty and the uncertainty arising
from source interactions is not practical with such polynomial approaches. Instead, they demonstrated
that variance decomposition analysis (ANOVA) provides a more consistent and interpretable means
of partitioning uncertainty sources, particularly variances related to interaction terms. Similar
ANOV A-based applications were also carried out by Bosshard et al. (2013) and Vetter et al. (2015),
who decomposed uncertainties in projected streamflow characteristics resulting from the use of
different GCMs, hydrological models (HMs), bias correction algorithms, and so on.

Just as uncertainties stemming from GCM data, emission scenarios, and other components of
climate projections are reflected in primary variables of the hydrological cycle such as precipitation,
potential evapotranspiration (PET), and runoff, these uncertainties will inevitably be transmitted to
reservoir operation outputs. Therefore, identifying the sources of uncertainty in projections used to
assess the future behavior of reservoirs and to forecast reservoir releases will provide critical insights
to mitigate potential future risks. While the uncertainty theme has frequently been explored at the
macro scale, with emphasis on the hydrological regime in the studies cited above, it is also necessary
to unravel how the various factors constituting the modeling chain contribute to reservoir operations
and water supply systems.

To address the critical issue highlighted above, this study first generated long-term (2021—
2099) meteorological projections for the Tahtali dam reservoir in western Tiirkiye utilizing multiple
RCP scenarios, GCMs, and downscaling methods. Thereafter, inflow projections for the same horizon
were produced using seven calibrated HMs driven by the projected meteorological data. Accordingly,
the effects of the modeling chain followed, shaped by four main factors, on the operation and
optimization of the reservoir releases were investigated. The quantitative contributions of distinct
uncertainty sources affecting the modeling process were assessed through a four-way ANOVA
approach. All these analyses were conducted on the outputs of a hedging rule integrated into the
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parameterization-simulation-optimization framework for the reservoir and were compared with those
obtained under the standard operating policy (SOP). The remainder of this paper is structured as
follows: Section 2 introduces the data employed in the study, Section 3 describes the methodology
applied, Section 4 presents the results and discussion, and the final section draws concluding remarks.

2 DATA USED
2.1 Study region and observed data

The case study was carried out in the Tahtali watershed (554 km?) located in the Kiiciik
Menderes River Basin in western Tiirkiye. The Tahtali Reservoir, with an active storage capacity of
about 291 Mm?, plays an important role in supplying nearly 128 Mm?/year of fresh water to Izmir
city. Given recent shifts in the hydrological regime for this region, reliable reservoir operation has
become more essential for sustainable water resources management. For hydrological modeling,
naturalized streamflow data from 1970-1988 (prior to dam construction) were used, along with
reservoir characteristics and storage—area relations obtained from the State Hydraulic Works of
Tiirkiye. During this observation period, the region received an average annual precipitation of 825
mm and had a mean temperature of 16 °C, while annual runoff was around 285 mm, which is nearly
one-third of the precipitation (Ersoy et al., 2025a).

2.2 Regional climate simulation

To project future hydro-climatic changes in the Tahtali watershed, data from five GCMs under
two RCP scenarios (4.5 and 8.5) were utilized in both dynamically and statistically downscaled forms.
Together with seven lumped HMs, the modeling chain produced 140 inflow projection combinations,
which also served as required inputs for the reservoir operation analyses (Ersoy et al., 2025b).

Dynamically downscaled climate data for the baseline historical scenario period (1981-2005)
and four future horizons (2021-2039, 20402059, 2060-2079, 2080-2099) were compiled from the
CORDEX database for the Middle East and North Africa (MENA) domain. Outputs from five GCMs
(CNRM-CMS5, GFDL-ESM2M, EC-EARTH, HadGEM2-ES, and MPI-ESM-MR) were available
under both RCP4.5 and RCP8.5. Systematic biases were also corrected using the quantile delta
mapping algorithm, which has been shown to preserve relative changes more effectively than other
standard methods. According to bias-corrected CORDEX data, projected precipitation changes under
RCP4.5 scenario remained generally insignificant throughout most of the century, whereas under
RCP8.5 some GCMs indicated notable reductions during specific periods. In contrast, all CORDEX
projections consistently reflected warming trends during 2040-2099, with anomalies ranging
between 1.0-3.0 °C under RCP4.5 and 3.2—6.0 °C under RCP8.5 toward the late century. Besides,
HadGEM2-ES in particular projected the strongest warming, consistent with previous findings over
the MENA domain (Ozturk et al., 2018).

Moreover, statistical downscaling was conducted via radial basis function networks (RBFNs),
which established transfer functions between ERAS5 reanalysis predictors and local observations.
Predictor selection was carried out using the least absolute shrinkage and selection operator (LASSO)
method, and the trained RBFNs with those predictors yielded satisfactory performance, where the
Nash—Sutcliffe efficiency (NSE) values exceeded 0.75. After operating RBFNs-based structure,
biases in the statistically downscaled data were again corrected with the QDM, as applied to the
CORDEX datasets. Results revealed that projected precipitation anomalies from the statistical
approach were generally consistent with CORDEX outputs, with only minor deviations. Temperature
projections also reflected the overall warming trend, though under RCP8.5 the GFDL-ESM2M and
HadGEM2-ES variants pertaining to statistical downscaling application produced anomalies about
1.0 °C lower than their dynamical counterparts. This is possibly due to the parameterization choices
in regional climate models, as previously underlined by Thomas et al. (2021).

50



RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5
60%
40%

v
i
l
L

abcde

T O 09

&S
AP
ENAFN RN S

(7]

© £ > E
O

8 = 5 Ny = %
Z &

E S

?’U o

1S

o0

S £ £

o Z S - =X

5 g, =

> R e e

I AN it \\’ \\\
E CNRM HadGEM?2
(;\_‘l GFDL MPI
(D FEARTH e eee)MEAN

Figure 1. Projected changes in annual mean runoff across four future periods under two RCP
scenarios. The sub-plots show anomaly projections from five GCMs driven by seven lumped HMs.

2.3 Projected runoff data

The hydrological ensemble data were derived from seven lumped HMs (abcde, Awbm,
Dynwbm, Gr2m, Guo, Témez, and Twbm), which were previously calibrated under different global
optimization algorithms for the Tahtali watershed and validated by Ersoy et al. (2025a). These HMs,
which need monthly total precipitation and empirically derived potential evaporation as inputs,
achieved NSE values above 0.80 during calibration/validation period and demonstrated their ability
to capture overall rainfall-runoff dynamics. However, some HMs (Dynwbm, Gr2m, Guo) showed
weaker skill for low flows, as indicated by LNSE values from log-transformed flows, while Twbm
performed slightly better in generating both the overall hydrograph and low flow conditions.

In the study, an ensemble of 140 runoff projections was analyzed by comparing twenty-year
mean runoff changes (AQ) relative to the historical scenario baseline (Figure 1). Accordingly, even
marginal precipitation reductions were found to have a considerable impact on AQ, whereas more
severe precipitation decreases under RCP8.5, particularly from GFDL-ESM2M, led to runoff
reductions ranging between 27% and 63% after 2060. Also, this GCM accounted for the largest share
of statistically significant decreases. On the other hand, MPI-ESM-MR and CNRM-CMS5 produced
fewer significant variants. Moreover, as for HMs employed, Awbm and Twbm exhibited the most
pronounced decreasing runoff trends, while the Guo model showed weaker sensitivity to changing
climate inputs. All these findings underscore the strong dependence of runoff projections on how
multi-GCM combinations are made and which emission scenarios and HMs they interact with, as
previously raised by Wang et al. (2020) and Okkan et al. (2023).
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3 METHOD

In this study, runoff projections generated by the calibrated HMs were transformed into
reservoir inflows and then employed as inputs to reservoir operation optimization modeling (Figure
2). We also used the standard operating policy (SOP), which releases water to fully meet current
demand without considering future shortages, for comparison. The employed reservoir operation
optimization model in Figure 2 is a nonlinear hedging policy, denoted as HDG-2d, which links
monthly release decisions to the corresponding storage levels through a two-dimensional parametric
rule. Unlike SOP, this HDG-2d model applies controlled restrictions on reservoir releases so as to
minimize the likelihood of severe supply deficits during drought periods (Celeste and Billib, 2009;
Okkan et al., 2023).

Precipitation
R(t)=func (D(t), V(t), Q(f),..., Inflow . | projections
HDG-2d parameters) — projections mMmmtao cam\;e:ed T t
Q i emperature
Reservoir simulation @ : projections
through parameterized
rule curve | et
R net evaporation loss
derivation Potentir_:ll Locally calibrated
""" <~ evaporation Kharufa equation
via projections
iter=iter+1 ‘
Has itermax Operate
been N optimization
hed?
ierTelrale algorithm
Y Optimal Reservoir
HDG-2d model performance indices
parameters

Projected reservoir
operation outputs

Figure 2. Conceptual illustration of the HDG-2d model integrated into the modeling chain framework
of this study, adapted from Okkan et al. (2023).

When employing HDG-2d, the objective is to allocate releases that meet demands D(¢) by
minimizing the conventional sum of squared deficits. In the mass balance, the release R(¢) is
controlled by hedging parameters and net evaporation volume E(?) is derived iteratively from the
area—storage curve, with all variables in Mm?. The related operation rule apply hedging rules through
hdg(7), defined by the combined value (COMV) of active storage and inflow at month £ i.e., Q(t), as
given in Eq. (1).

0, if V(t+1) < Viin
s(1)
coMv
R(t) =4 D(t) x (W(T()t)> , if COMV(t) < hdg(T) )
D(t), if COMV(t) > hdg(t)or V(t+1) = Vpyux

where the variable COMV (t) = \/[V(t) — Vinin — E(£)]1% + Q(t)?; s(7) is the parameter shaping the
nonlinearity of the hedging function; V(¢) and V(#+1) represent the reservoir storage volumes at the
beginning and the end of month t; Vi, and Viax correspond to the reservoir dead volume and maximal
storage volume, respectively.
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The HDG-2d model has two sets of monthly parameters, 4dg(z) and s(z), for z =1, 2, ..., 12,
yielding 24 parameters to be calibrated. The shape parameter is restricted to the interval [0, 1], while
hedging threshold parameter must remain positive and cannot exceed the active reservoir storage for
any month ¢ (Celeste and Billib, 2009).

According to Figure 1, the optimization of the HDG-2d model starts by evaluating the
objective function with an initial set of hedging parameters. These parameters were iteratively
adjusted by using a differential evolution algorithm coupled with a modified mutation strategy. This
adopted framework follows Okkan et al. (2023) without any alteration in the algorithm settings. In
total, 140 inflow projections together with projected net evaporation data were considered while
calibrating the HDG-2d, and satisfactory convergence was achieved with a population size of 50 and
a maximum iteration number (itermax) of 300. After model calibration under various conditions, the
long-term performance of the case reservoir was assessed using the dimensionless vulnerability index
(VUL). This index was preferred because it quantifies the expected value of supply deficits and
follows the formulation of Sandoval-Solis et al. (2011).

4 RESULTS AND DISCUSSION

The results are based on the evaluation of reservoir operation models under multiple inflow
projections. A uniform monthly demand of 10.667 Mm? (128 Mm?/year) was defined for the Tahtali
Reservoir, since higher or increasing demands produced unrealistic regulation ratios relative to its
planning conditions. While SOP required no iterative procedure excluding net evaporation loss
estimation, the nonlinear HDG-2d framework was optimized with DEA, executed 10 times per variant
with a stopping criterion of 300 iterations, as described in the previous section. Table 1 outlines the
behavioral contrasts between SOP and HDG-2d, based on statistics from an ensemble of 140 reservoir
operation projections. This table verifies that the SOP resulted in a higher frequency of severe single-
period shortages as drought intensity became more apparent.

Table 1. Comparative statistics of reservoir performance indices under SOP and HDG-2d, derived
from 140 projection variants.

Performance indices Models Mean Median Minimum Maximum
. HDG-2d 0.875 0.887 0.605 1
Volume-based reliability SOP 0907 0.922 0.652 )
Dimensionless vulnerability index HDG-2d  0.177 0.179 0 0.403
vu Y SOP 0.772  0.795 0 0.907

The experiments pointed out that the HDG-2d model is generally characterized by relatively
higher hdg values and lower shape parameters for wetter months. This process also allowed for
allocating partial reservoir releases during drier periods. Because of the large number of simulations,
they are not presented here. These calibrated parameters were observed to gradually restrict releases
in the early stages of the projection horizon. Of course, this hedging application bring about a slight
decrease in volume-based reliability indices (Table 1). The parametrization of HDG-2d reflects a
system behavior aimed at preparing the reservoir for severe drought conditions and kept VUL values
at approximately one-fourth of the values obtained under the SOP, as seen in Table 1.

The variability of projected VUL values across different sources of uncertainty was visualized
by using box plots (Figure 3). For each uncertainty source, these plots were generated by combining
the other remaining components of the modeling chain. For instance, the figure presents HM-specific
findings showing VUL distributions from 20 projection variants (5 GCMs x 2 ESs x 2 DMs), while
GCM-specific ones were collected from 28 projection combinations. Figure 3 also demonstrates that
HDG-2d substantially reduces the severe vulnerabilities observed under SOP, independent of the
uncertainty source. Another observation is that under SOP, selection of HM strongly influences VUL
outcomes, as seen in the notable median shifts among reservoir operation models.
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Figure 3. Projected vulnerability values (VUL) under two reservoir operation models, stratified by
four key uncertainty factors. Each panel represents the distribution of vulnerability values related to
a single factor: RCP scenarios (top-left), GCMs (top-right), downscaling data types (bottom-left), and
HMs (bottom-right)

The system vulnerability projections were also examined by the four-way ANOVA approach,
of which procedure is outlined by Vetter et al. (2015). It is obvious from Figure 4 that the HM
selection accounted for 36% of the total variance for projected VUL values (Ersoy et al., 2025b).
Moreover, nonlinear interactions between HMs and other uncertainty sources contributed even more
to the overall interaction variance under SOP. Interestingly, HDG-2d model meaningfully tempered
HM-induced variances for that performance measure and thus diminished the overall uncertainty
compared to that of SOP (Figure 4).

Although projected annual mean streamflow changes under the HIST scenario suggest that
HM-related uncertainty is limited (not shown), the applied HMs differ in their ability to represent
fundamental hydrological processes. Consequently, runoff simulated by these monthly HMs under
different climate conditions can vary both in magnitude and in interannual fluctuations. In particular,
LNSE outcomes indicate that certain HMs have difficulty in reproducing low-flow regimes (Ersoy et
al., 2025a), and discrepancies are also detected across models in terms of baseflow indices and low-
flow durations. The simple rule of a model such as SOP cannot adapt to these inconsistencies, instead
allocating inflows directly to meet target demands. This lack of adaptability often reduces the
sustainability of releases, producing higher and more uncertain VUL values, as seen in Figure 3 and
4. As HM selection uncertainty has a stronger influence on low-flow projections than on annual
means (Wang et al., 2020), SOP is ineffective at dampening this HM-related low-flow variability,
thereby amplifying overall uncertainty. By contrast, the HDG-2d model can regulate releases in
advance through its parametric rule structure, even under low-flow conditions. According to Ersoy et
al. (2025b), this could be achieved by its buffering capacity preventing inflow disparities induced by
employed HMs from directly propagating to projected VUL values.
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Figure 4. Portioned variances for projected VUL values, attributed to key uncertainty sources,
together with their combined interaction.

Even though HDG-2d reduced overall uncertainty with regard to VUL by 65% through reducing
the huge variances from HMs and their interactions, GCMs and RCPs still accounted for two-thirds
of the total variance, showing the model’s sensitivity to climate-related signals (Figure 4). Since
HDG-2d prioritizes moderating flow deficits, GCM and scenario effects can become more prominent
when this adaptive model incorporates changing climate signals into release decisions. Unlike SOP,
this led to a reversed pattern, where distinct climate forcings cause relatively greater spread in hedging
responses and VUL values. This is likely because the HDG-2d model exhibited higher sensitivity to
some drying GCMs such as GFDL-ESM2M, with the GCM-related share of variance roughly
doubling compared to that of SOP.

It should be emphasized that HDG-2d adjusts its hedging strategy separately for each RCP, with
its parameters being more strongly shaped by emission scenario selected than by differences among
GCMs. The first panel of Figure 4 illustrates an indication of how scenario-related uncertainty
compares in relative importance. Under RCPS8.5, marked by strong radiative forcing, HDG-2d
generally imposes stricter release restrictions, which broadens the ensemble interquartile range and
highlights emission scenario-based uncertainty for vulnerability (Figure 4). Since RCP choice is
increasingly influential on projected temperature and evaporation trends rather than annual mean
runoff (Ersoy et al., 2025b), the stronger RCP uncertainty under HDG-2d suggests that its calibration
effectively responds to these changing climate signals. Therefore, achieving low scenario
uncertainties under the SOP, which cannot suppress HM-based disparities under low-flow conditions
and is not sensitive to emission-induced shifts because of its simplicity, cannot be considered a mark
of robustness when accompanied by the higher VUL values it produced.

5 CONCLUSIONS

Reservoirs that were originally designed under stationary hydrological records now
experience increased vulnerability, with uncertainty propagating under climate change—driven
alterations in reservoir inflows. This study assessed reservoir operation performance under climate
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change uncertainty for an example reservoir operated in the western part of Tiirkiye by comparing
the traditional SOP model and the adaptive HDG-2d model across 140 projected vulnerability values.
The findings showed that SOP amplified hydrological model—driven volatility and produced higher
vulnerability levels, while HDG-2d reduced total uncertainty by more than 50% and ensured that
most projections remained below critical vulnerability thresholds. Moreover HDG-2d maintained
responsiveness to climate forcing derived from multiple GCMs and emission scenarios. This
demonstrates that the framework applied not only buffers modeling discrepancies but also effectively
incorporates external climate signals into reservoir releases. Overall, we also highlight that adaptive
hedging modeling can provide more robust and uncertainty-aware reservoir operation strategies,
while irreducible GCM and scenario uncertainties as well as internal variabilities remain a key
challenge for credible water resources planning. Furthermore, more detailed analyses on this topic,
including alternative crop patterns for irrigation purposes, are being addressed in a
separate ongoing study.
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